# CO 351 - Assignment \#1 

Student Name

Due: $12^{\text {th }}$ May 2006 12:00PM

1. Proof:
(a) Given a digraph $D=\{N, A\}$. Assume we have an st-dipath $P=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\}$ where $s=v_{1}, t=v_{k}$. Let $\delta(S)$ be any st-cut. Chosing $a$ to be the largest from the range $1 \leq a \leq k-1$ (that is the last node in $S$, whose arc has head outside $S)$ such that $v_{1} \in S$. Then we know that $\exists v_{a+1} \notin S$ and $v_{a} v_{a+1} \in A$. Therefore $\forall$ st-cuts $\delta(S) \neq \emptyset$.
(b) Given a digraph $D=\{N, A\}$. Assume there is no st-dipath. Let the set $S$ be the nodes which can be reached from $s$. Therefore we know that $s \in S$ and $t \notin S$ (by definition of reachability, since no st-dipath). Then $\forall a, b$ where $a \in S$ and $b \notin S, a b \notin A$ (reachability, $\exists s a$-path but $\nexists s b$-path). Therefore the arc $a b \notin A$. Therefore $\exists$ st-cut $\delta(S)=\emptyset$.
2. Proof:

Given any $u v$-dipath $P_{u v}=\left\{k_{1} k_{2}, k_{2} k_{3}, \ldots, k_{i-1} k_{i}\right\}$, such that $k_{1}=u$ and $k_{i}=v$. Also given any $v w$-dipath $P_{v w}=\left\{k_{i} k_{i+1}, \ldots, k_{n-1}, k_{n}\right\}$, such that $k_{i}=v$ and $k_{n}=w$. Remark $1 \leq i \leq n$. If we put these two paths together we get a sequence of arcs $P=\left\{k_{1} k_{2}, k_{2} k_{3}, \ldots, k_{i-1} k_{i}, \ldots, k_{n-1} k_{n}\right\}$ such that $k_{1}=u, k_{i}=v, k_{n}=w$. We define the $u w$-cut to be $\delta(S)$. Then for any $S$ such that $k_{j} \in S, 1 \leq j<n$. Then there exists $k_{j+1} \notin S, k_{j+1} \in\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$. Therefore there exists $k_{j} k_{j+1} \in P$. In otherwords $k_{j} k_{j+1} \in \delta(S)$. Therefore $\delta(S) \neq \emptyset$, (the uw-cut). Therefore by Theorem3 there exists a $u w$-dipath (since there are no empty $u w$-cuts).

## 3. Proof:

(a) Every arc of this type has tail $u \in S$ and has a head $\in S$ which means that these arcs do not leave nor enter $S$ That means that this type of arcs do not change the left side of the quality $\left(\sigma_{u \in S}(d(u)-d(\bar{u}))\right.$ because for every arc the tail is counted towards $d(u)$ and the head is counted towards $d(\bar{u})$. Further more we know that the contribution to $|\delta(S)|-|\delta(\bar{S})|$ would be zero since in this situation no arcs leave or enter $S$.
(b) In this case there is zero contribution to the left side since $u, v \notin S$ and there is also no contribution to the right side because the arcs have tails and heads $\notin S$, therefore there are no arcs entering or leaving $S$.
(c) Every arc of this type has tail $u \in S$ and has head $\notin S$. Therefore the sum of all these arcs is $\delta(S)$.
(d) Every arc of this type has head $u \in S$ and has tail $\notin S$. Therefore the sum of all these $\operatorname{arcs}$ is $\delta(\bar{S})$.

Since any arc can be exclusively from one of the 4 types (a,b,c,d) we can split the $\operatorname{sum} \sigma_{u \in S}(d(u)-d(\bar{u}))=\sigma_{u_{a}, u_{c}, u_{d} \in S}\left(d\left(u_{a}\right)+d\left(u_{b}\right)+d\left(u_{c}\right)+d\left(u_{d}\right)-d\left(\overline{u_{a}}\right)-d\left(\bar{u}_{b}\right)-\right.$ $\left.d\left(\bar{u}_{c}\right)-d\left(\bar{u}_{d}\right)\right)$. We know that $d\left(u_{a}\right)-d\left(\bar{u}_{a}\right)=0$ because of the argument in (a). We know that $d\left(u_{b}\right)=0$ and $d\left(\overline{u_{b}}\right)=0_{\text {becauseu }}^{b} \notin S$ nor are any of the nodes it connects to as explained in (b). $d\left(\bar{u}_{c}\right)=0$ because this is the set of arcs that only have tails in $S . d\left(u_{d}\right)=0$ because this is the set of arcs that have only heads in $S$. Therefore we are left with $\sigma_{u_{a}, u_{c}, u_{d} \in S}\left(d\left(u_{c}\right)-d\left(\bar{u}_{d}\right)\right)$ which is $|\delta(S)|-|\delta(\bar{S})|$ (that is, as shown in (c) and (d), (all the arcs with tails $\in S$ and heads $\notin S$ ) - (all the arcs with heads $\in S$ and tails $\notin S)$ ).
4. The problem can be represented by a directed graph $D=\{N, A\}, N=\{0,1,2,3,4\}, A=$ $\{01,02,03,04,12,13,14,23,24,34\}$ such that each arc is associated with a cost. Each cost is computed as follows: $w\left(A_{i j}\right)=K_{i}+1+C_{i}+1\left(D_{i+1}+D_{i+2}+\ldots+D_{i+j+1}\right), 0 \leq$ $i \leq j \leq k-1, k=\max (N) . i+1$ is the number of the day during which the container is filled, $i+j+1$ is the number of the day until which the supply should last. $K_{i+1}$ is the fixed cost for refilling the container at the beginning of day $i+1 . C_{i+1}$ is the cost of each unit for the given day $i+1 . D_{i+1}$ is the number of unit demanded for day $i+1$.
The weights would be as follows:

$$
\begin{aligned}
& w\left(A_{01}\right)=25+8(5)=65 \\
& w\left(A_{02}\right)=25+8(5+9)=137 \\
& w\left(A_{03}\right)=25+8(5+9+6)=185 \\
& w\left(A_{04}\right)=25+8(5+9+6+2)=201 \\
& w\left(A_{12}\right)=15+9(9)=96 \\
& w\left(A_{13}\right)=15+9(9+6)=150 \\
& w\left(A_{14}\right)=15+9(9+6+2)=168 \\
& w\left(A_{23}\right)=16+13(6)=94 \\
& w\left(A_{24}\right)=16+13(6+2)=120 \\
& w\left(A_{34}\right)=2+11(2)=24
\end{aligned}
$$

The min cost is $\$ 201$ and the shortest dipath respectively is $P=\{04\}$.

